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Abstract 
 
A theoretical model for geometrically nonlinear vibration analysis of piezoelectrically actuated circular plates made 

of functionally grade material (FGM) is presented based on Kirchhoff’s-Love hypothesis with von-Karman type geo-
metrical large nonlinear deformations. To determine the initial stress state and pre-vibration deformations of the smart 
plate a nonlinear static problem is solved followed by adding an incremental dynamic state to the pre-vibration state. 
The derived governing equations of the structure are solved by exact series expansion method combined with perturba-
tion approach. The material properties of the FGM core plate are assumed to be graded in the thickness direction ac-
cording to the power-law distribution in terms of the volume fractions of the constituents. Control of the FGM plate’s 
nonlinear deflections and natural frequencies using high control voltages is studied and their nonlinear effects are 
evaluated. Numerical results for FG plates with various mixture of ceramic and metal are presented in dimensionless 
forms. In a parametric study the emphasis is placed on investigating the effect of varying the applied actuator voltage as 
well as gradient index of FGM plate on vibration characteristics of the smart structure. 
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1. Introduction 

Laminated composite structures can be tailored to 
design advanced structures, but the sharp change in 
the properties of each layer at the interface between 
two adjacent layers causes large inter-laminar shear 
stresses that may eventually give rise to the well 
known delamination phenomenon. Such detrimental 
effects can be mitigated by grading the properties in a 
continuous manner across the thickness direction, 
resulting in a new class of materials known as ‘func-
tionally graded materials’ in which the material prop-
erties vary continuously throughout the continuum 
and specifically in the plates along the thickness di-

rection. For example, Teymur et al. [1] carried out the 
thermo-mechanical analysis of materials, which are 
functionally graded in two directions, and demon-
strated that the onset of delamination could be pre-
vented by tailoring the microstructures of the com-
posite plies. In an effort to develop the super heat 
resistant materials, Koizumi [2] first proposed the 
concept of FGM. These materials which are micro-
scopically heterogeneous and are typically made from 
isotropic components, such as metals and ceramics, 
were initially designed as thermal barrier materials for 
aerospace structures and fusion reactors. But they are 
now developed for the general use as structural com-
ponents. Thus, the use of FGM may become an im-
portant issue for developing advanced structures. 
Structures made of FGMs are often susceptible to 
failure from large deflections, or excessive stresses 
that are induced by large temperature gradients and/or 
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mechanical loads. It is therefore of prime importance 
to account for the geometrically nonlinear deforma-
tion to ensure more accurate and reliable structural 
analysis and design.  

In the quest for developing lightweight high per-
forming flexible structures, a concept emerged to 
develop structures with self-controlling and self-
monitoring capabilities. Expediently, these capabili-
ties of a structure were achieved by exploiting the 
converse and direct innate effects of the piezoelectric 
materials as distributed actuators or sensors, which 
are mounted or embedded in the structure [3, 4]. Such 
structures having built-in mechanisms for achieving 
self-controlling and/or self-monitoring capabilities are 
customarily known as ‘smart structures’. The concept 
of developing smart structures has been extensively 
used for active control of flexible structures during 
the past decade [5-7]. In this regard, the use of axi-
symmetric piezoelectric actuators in the form of a 
disc or ring to produce motion in a circular or annular 
substrate plate is common in a wide range of applica-
tions including micro-pumps and micro-valves [8, 9], 
devices for generating and detecting sound [10] and 
implantable medical devices [11]. They may also be 
useful in other applications such as microwave micro-
switches where it is important to control distortion 
due to intrinsic stresses [12].  

To effectively utilize the piezoelectric effect and 
actuating properties of piezoelectric materials, the 
interaction between the host structure and piezoelec-
tric patch must be well understood. Compared to the 
literature on the piezoelectric actuation of beam-like 
structures, the literature on circular piezoelectric ac-
tuators is not extensive. Dobrucki and Pruchnicki [13] 
developed a finite element method for predicting the 
dynamic behavior of axisymmetric multilayer shell 
structures containing piezoelectric layers and with 
free boundary conditions. They demonstrated the 
application of the method to a passive circular plate 
with free edges, carrying a disc actuator on each face. 
Later, Morris and Forster [14] used the finite element 
method to optimize a piezoelectric disc actuator with 
respect to the static deflection of a passive circular 
plate with fully clamped or ideally pinned boundary 
conditions. More recently, Dong et al. [9] used the 
finite element method to predict the deflection of a 
circular passive plate with pinned boundary condition 
using a piezoelectric ring actuator. Li and Chen [15] 
proposed an analytical solution for the deflection of a 
circular plate, with clamped or pinned boundary con-

ditions, by a piezoelectric disc actuator bonded to the 
disc. The analysis was based on the assumption of 
linearly distributed bending strain through the thick-
ness of the different layers. A restricted assumption, 
that radial and circumferential strains are equal, was 
also implicitly introduced, thus reducing the two-
dimensional model to a one-dimensional model that is 
quite similar to that of a beam with piezoelectric film 
actuator [16, 12]. This assumption is valid only for a 
disc in pure bending loaded with an axisymmetrical 
moment at the edge [17]. Therefore, the solution is 
not strictly applicable for an annular actuator. 

Most of the studies on piezoelectric systems were 
based on linear piezoelectricity and linear elasticity 
theories [18, 19]. Since most structures and elastic 
continua, especially large lightweight space structures, 
are flexible, large external static and dynamic excita-
tions can introduce large deformations or geometrical 
nonlinearity in the structural systems. Accordingly, 
there is a need to investigate the induced geometrical 
nonlinear effects on static, dynamic, and control char-
acteristics in order to accurately design and effec-
tively control the structural systems.  

Also in recent years, with the increasing use of 
smart material in vibration control of plate structures, 
the mechanical response of FGM plates with surface-
bonded piezoelectric layers has attracted some re-
searchers’ attention. Among those, Ootao and Tani-
gawa [20] theoretically investigated the simply sup-
ported functionally graded (FG) rectangular plate 
integrated with a piezoelectric plate subjected to tran-
sient thermal loading. A 3-D solution for rectangular 
FG plates coupled with a piezoelectric actuator layer 
was proposed by Reddy and Cheng [21] using trans-
fer matrix and asymptotic expansion techniques. 
Wang and Noda [22] analyzed a smart FG composite 
structure composed of a layer of metal, a layer of 
piezoelectric and a FG layer in between, while He et 
al. [23] developed a finite element model for studying 
the shape and vibration control of FG plates inte-
grated with piezoelectric sensors and actuators. The 
post buckling behavior of rectangular FG plate with 
its surface bonded to piezoelectric actuators under the 
combined action of thermo-electro-mechanical load-
ings was examined by Liew et al. [24] and Shen [25]; 
Yang et al. [26] investigated the nonlinear thermo-
electro-mechanical bending response of FG rectangu-
lar plates that are covered with monolithic piezoelec-
tric actuator layers on the top and bottom surfaces of 
the plate. They [27] also presented a large amplitude 
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vibration analysis of a rectangular FG plate with sur-
face-bonded piezoelectric layers by using a semi-
analytical method based on 1D differential quadrature 
and Galerkin technique. Most recently, Huang and 
Shen [28] investigated the dynamics of an FG plate 
coupled with two monolithic piezoelectric layers at its 
top and bottom surfaces undergoing nonlinear vibra-
tions in thermal environments. 

All the aforementioned studies focused on the rec-
tangular-shaped plate structures. However, to the 
authors’ best knowledge, no research dealing with the 
nonlinear vibration characteristics of the circular 
functionally graded plate integrated with the piezo-
electric layers has been reported in literature except 
the author's recent works in presenting an analytical 
solution for the free axisymmetric vibration of piezo-
electric coupled circular and annular FGM plates [29-
33]. In conjunction with these works, in this paper, 
nonlinear static and dynamic behaviors of a piezo-
electric coupled circular functionally graded plate 
structure with initial large nonlinear deformations (the 
von-Karman type geometrical nonlinear deforma-
tions) are studied. The material properties of the FG 
core plate are assumed to be graded in the thickness 
direction according to the power-law distribution in 
terms of the volume fractions of the constituents 
while a linear distribution of electric potential field 
along the thickness of piezoelectric layers is consid-
ered. A nonlinear static problem is solved first to de-
termine the initial stress state and pre-vibration de-
formations of the FG plate that is subjected to in-
plane forces and applied actuator voltage in the case 
of simply supported boundary conditions. By adding 
an incremental dynamic state to the pre-vibration state, 
the differential equations that govern the nonlinear 
vibration behavior of pre-stressed piezoelectric cou-
pled FGM plates are derived. Control effects on 
nonlinear static deflections and natural frequencies 
imposed by the piezoelectric actuators using high 
input voltages are investigated. Numerical examples 
are provided and simulation results are discussed. 
Numerical results for FGM plates with a mixture of 
metal and ceramic are presented in dimensionless 
forms. The good agreement between the results of 
this paper and those of the finite element (FE) analy-
ses validated the presented approach. A parametric 
study is also undertaken to highlight the effects of the 
applied actuator voltage and material composition of 
FG core plate on the non vibration characteristics of 
the composite structure. 

 
2. Functionally graded materials 

Nowadays, not only can FGM easily be produced 
but one can control even the variation of the FG con-
stituents in a specific way. For example, in an FG 
material made of ceramic and metal mixture, we have 

 
1m cV V+ =   (1) 

 
in which Vc and Vm are the volume fraction of the 
ceramic and metallic part, respectively. Based on the 
power law distribution [34], the variation of Vc vs. 
thickness coordinate (z) with its origin placed at the 
middle of thickness, can be expressed as: 
 

( 1 2) , 0n
c fV z h n= + ≥    (2) 

 
in which hf is the FG core plate thickness, n is the FGM 
volume fraction index (see Fig. 1). Volume fraction 
index n dictates the material variation profile across the 
plate thickness. We assume that the functionally 
graded plate is made from a mixture of ceramic and 
metal and the composition varies from the top to the 
bottom surface; i.e., the top surface of the FGM plate 
is ceramic-rich (alumina), whereas the bottom surface 
is metal-rich (aluminum). Typical values for alumina 
and aluminum are listed in Table 1 [35]. Note that the 
variation of both constituents (ceramics and metal) is 
linear when n=1. Moreover, for n=0, a fully ceramic 
plate is intended. All other mechanical, physical and 
thermal properties of FGM media follow the same 
distribution as for Vc. We assume that the inhomoge-
neous material properties, such as the modulus of 
elasticity E and the density ρ change within the thick-
ness direction z based on Voigt’s rule over the whole 
range of the volume fraction [36], while Poisson’s ratio 
υ is assumed to be constant in the thickness direction 
[37] as: 
 

( ) ( ) ( )c m c mE z E E V z E= − +  
( ) ( ) ( )c m c mz V zρ ρ ρ ρ= − +  (3) 
( )zν ν=  

 
where subscripts m and c refer to the metal and ce-
ramic constituents, respectively. After substituting Vc 

from Eq. (2) into Eqs. (3), material properties of the 
FGM plate are determined in the power law form 
which are the same as those proposed by Reddy and 
Praveen [34] : 
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Table 1. Material properties [35]. 
 

Property FGM Plate PZT4 

 Alumina Aluminum   
Young’s modulus 

(GPa) Ec = 380 Em = 70 Ep = 63 

Density (kg/m3) ρc =3800 ρm =2707 ρp =7500 

Poisson ratio 0.3 0.3 - 

e31 (C/m2)   −4.1 

 
( ) ( )( 1 2)n

f c m f mE z E E z h E= − + +  

( ) ( )( 1 2)n
f c m f mz z hρ ρ ρ ρ= − + +   (4) 

 

3. Nonlinear piezoelectric coupled FG circular 
plate system 

It is assumed that an FGM circular plate is sand-
wiched between two thin piezoelectric layers which 
are sensitive in both circumferential and radial direc-
tions as shown in Fig. 1 and the piezoelectric layers 
are much thinner than the FGM plate, i.e., hp<< 
hf .An initial large deformation exceeding the linear 
range is imposed on the circular plate and the von-
Karman type nonlinear deformation (nonlinear large 
deformation or geometrical nonlinearity) is adopted in 
the analysis. The von-Karman type nonlinearity as-
sumes that the transverse nonlinear deflection w is 
much more prominent than the other two inplane 
deflections. In this section, electromechanical system 
equations of the piezoelectric bounded FG plate are 
defined, followed by force and moment definitions. 
The system equations are then simplified to a trans-
verse electromechanical equation when inplane iner-
tia forces and excitations are neglected. Mechanical 
and electric boundary conditions of the laminated 
circular plate are also defined. 

 
3.1 Nonlinear strain-displacement relations 

The circular FG plate is assumed to be compara-
tively thin and according to the Kirchhoff's-Love 
assumptions, normal to the median surface are as-
sumed to remain straight and normal during deforma-
tion; thus out-of-plane shear deformations ( zrε , zθε ) 
are disregarded. Strain components at distance z from 
the middle plane are then given by 
 

rr rr rrzkε ε= + , zkθθ θθ θθε ε= + , r r rzkθ θ θε ε= + (5) 
 
where the z-axis is assumed positive outward. Here 

rrε , θθε , rθε  are the engineering strain components 

in the median surface, and rrk , kθθ , rk θ are the cur-
vatures which can be expressed in terms of the dis-
placement components. The relations between the 
middle plane strains and the displacement compo-
nents according to the von-Karman type nonlinear 
deformation (i.e., large deformation or geometrical 
nonlinearity) and Sander's assumptions are defined as 
[38]: 

 
21

2
r

rr
u w
r r

ε ∂ ∂⎛ ⎞= + ⎜ ⎟∂ ∂⎝ ⎠
  

21 1 1
2

ru u w
r r r

θ
θθε

θ θ
∂ ∂⎛ ⎞= + + ⎜ ⎟∂ ∂⎝ ⎠

 

1 1r
r

u u u w w
r r r r r

θ θ
θε θ θ

∂ ∂ ∂ ∂⎛ ⎞= + − + ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
  (6) 

2

2rr
w

r
κ ∂

= −
∂

 

2

2 2

1 1w w
r r rθθκ

θ
∂ ∂

= − −
∂ ∂

 

2

2

1 1
2r

w w
r r rθκ

θ θ
⎛ ⎞∂ ∂

= − +⎜ ⎟∂ ∂ ∂⎝ ⎠
  (7) 

 
where ru , uθ ,w represent the corresponding compo-
nents of the displacement of a point on the middle plate 
surface. Substituting Eqs. (6) and (7) into Eqs. (5), the 
following expressions for the strain components are 
obtained: 

 
2 2

2

1
2

r
rr

u w wz
r r r

ε ∂ ∂ ∂⎛ ⎞= + −⎜ ⎟∂ ∂ ∂⎝ ⎠
  (8) 

2 2

2 2

1 1 1 1 1
2

ru u w w wz
r r r r r r

θ
θθε

θ θ θ
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= + + − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

2

2

1

1 1 1
2

r
r

u u u
r r r

w w w wz
r r r r r

θ θ
θε θ

θ θ θ

∂ ∂
= + −

∂ ∂
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
Note that the quadratic terms in Eqs. (6)-(8) are 

nonlinear terms induced by the nonlinear large trans-
verse deflection w. 

 
3.2 Definition of force and moment resultants 

The stress components in the FG plate in terms of 
tensorial strains based on the generalized Hooke’s 
Law are defined as [39]: 
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[ ]2(1 )rr rr
E

θθσ ε νε
ν

= +
−

  

[ ]2(1 ) rr
E

θθ θθσ ε νε
ν

= +
−

  (9) 

2(1 )r r
E

θ θσ ε
ν

=
+

  

The moments and membrane forces include both 
mechanical and electric components as 
 

m e
r r rN N N= + , m eN N Nθ θ θ= +  , 

m e
r r rN N Nθ θ θ= + , m e

r r rM M M= +  
m eM M Mθ θ θ= + , m e

r r rM M Mθ θ θ= +   (10) 
 
where mN and eN are the mechanical and electrical 
membrane forces and mM and eM are the mechanical 
and electrical bending moments, respectively, and are 
expressed as  
 

2

2
( , ) ( , )f

f

hm m
r rrh

N N dzθ θθσ σ
−

= ∫    (11) 
2

2
( , ) ( , )f

f

hm m
r rrh

M M zdzθ θθσ σ
−

= ∫   (12) 
2

2
( , ) (1, )f

f

hm m
r r rh

N M z dzθ θ θσ
−

= ∫   (13) 
 

The membrane forces include both mechanical and 
electric components where the superscript m denotes 
the mechanical component and e the electric compo-
nent. The electric components are related to electro-
mechanical couplings or control forces induced by the 
piezoelectric layers. 

Substituting Eqs. (5) and (9) into Eqs. (11)-(13) 
gives the following constitutive relations for me-
chanical forces and moments of FG plate in terms of 
membrane and bending strains which include the 
nonlinear effects  
 

1( )m
r rrN D θθε νε= + , 1( )m

rrN Dθ θθε νε= +  

1(1 )
2

m
r r

DN θ θ
ν ε−

=   (14) 

2 ( )m
r rrM D θθκ νκ= + , 2 ( )m

rrM Dθ θθκ νκ= +  

2 (1 )
2

m
r r

DM θ θ
ν κ−

=   (15) 
 
where the coefficients of D1 and D2 in the above 
equations are related to the plate stiffness and are 
given by 

2

1 22

( )
1

f

f

h f

h
f

E z
D dz

ν−
=

−∫ ,
2

2

2 22

( )
1

f

f

h f

h
f

z E z
D dz

ν−
=

−∫   (16) 

It is assumed that the piezoelectric layers are sensitive 

in both radial and circumferential directions and the 
piezoelectric permeability constants e31=e32. (If there is 
no mechanical stretch during the manufacturing process, 
the piezoelectric permeability constants in two inplane 
directions are equal.) The converse piezoelectric effect 
is useful in actuators such as ultrasonic welders and 
ultrasonic motors. Due to this effect a mechanical de-
formation, i.e., the stress or strain, can be produced 
when an electric field is applied to the piezoelectric 
materials in its poled direction. Hence, the electric 
membrane forces and bending moments are induced by 
the converse piezoelectric effect on the piezoelectric 
actuators and these forces vary linearly across the plate 
thickness as [40] 
 

( )31 2,e e t b
r z zN N e V Vθ= = +  0,e

rN θ =   (17) 

( )( )31 2,e e t b
r f p z zM M e h h V Vθ= = + − 0,e

rM θ =  (18) 
 
in which t

zV  and b
zV  are the control voltages ap-

plied to the top and bottom piezoelectric layers, re-
spectively. 

 
3.3 System electromechanical equations 

The system electromechanical equations, in three 
axial directions, of the piezoelectric coupled circular 
FG plate (Fig. 1) can be derived from the generic 
piezoelectric shell equations using four system pa-
rameters: two Lame parameters, A1 =1, A2 =a, and 
two radii, R1 =∞, R2 =∞ [41], and neglecting the in-
plane inertia forces we have 
 

( ) 0mr r
r

rN N N q
r

θ
θθ

∂ ∂
+ − + =

∂ ∂
  (19) 

( ) 0mr
r

rN N N q
r

θ θ
θ θθ

∂ ∂
+ + + =

∂ ∂
  (20) 

2

2

2 2

12 2 2

( )1 1 12

1 1 0

rz z
r r

m
z

rQ Q w wN N
r r r r r r r

w w wM I q
r r r t

θ
θ

θ

θ

θ

∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
⎡ ⎤∂ ∂ ∂

+ + − + =⎢ ⎥∂ ∂ ∂⎣ ⎦

 (21) 

 
where Nij is the membrane force (including both elas-
tic and electric effects) on the ith surface in the jth 
direction; Mij is the bending moment (also including 
both elastic and electric effects); m

iq  is the mechani-
cal excitation in the ith direction. When i=j the forces 
and moments are normal components; i≠j the forces 
are shear forces and the moments are twists or tor-
ques; 1I and the transverse shear components rzQ  
and zQθ  are given as 
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1 ( )r r
rz

rM MQ M
r r

θ
θ θ

∂ ∂⎡ ⎤= − +⎢ ⎥∂ ∂⎣ ⎦
 ,  

1 ( )r
z r

rM MQ M
r r

θ θ
θ θ θ

∂ ∂⎡ ⎤= − +⎢ ⎥∂ ∂⎣ ⎦
,  

2

1 2
( )f

f

h

fh
I z dzρ

−

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫   (22a,b,c) 

 
Excluding inertia forces and external forces, all 

other force and moment terms are contributed by the 
FG plate’s elasticity and the layers’ piezoelectricity. 

 
3.4 Reduced system equation and boundary condi-

tions 

To effectively and quantitatively evaluate the non-
linear effect of the piezoelectric bounded FG plate, 
three governing Eqs. (19)-(21) are simplified to a 

 
Table 2. Values of the normalized dimensionless center deflections with respect to the normalized dimensionless piezoelectric 
voltages computed by two methods (present series solution and FEM) (v=0.3, n=10000). 
 

Normalized 
Voltage (V) 

Normalized dimensionless 
center deflections 

Normalized 
Voltage (V) 

Normalized dimensionless  
center deflections 

 Present  FEM Diff. (%)  Present   FEM Diff. (%) 
0 0 0 0 1.6 0.8925 0.8930 0.057 

0.4 0.3537 0.3538 0.041 2 0.9924 0.9930 0.065 
0.8 0.5982 0.5985 0.048 2.4 1.0777 1.0784 0.068 
1.2 0.7678 0.7685 0.055 2.8 1.1509 1.1517 0.071 
1.4 0.8343 0.8348 0.055 3 1.1827 1.1836 0.073 

 
Table 3. Effect of control voltages to the first natural frequency for various FGM indexes. 
 

FGM index (n) Normalized volt-
age Metal 100 10 5 1 0.1 Ceramic 
0 4.8891 4.9722 5.5359 5.9444 7.4121 10.1803 11.2882 
1 7.2704 7.3939 8.2323 8.8397 11.0222 15.1388 16.7863 
2 9.3329 9.4915 10.5677 11.3474 14.1491 19.4335 21.5483 
3 10.7796 10.9628 12.2058 13.1064 16.3423 22.4459 24.8886 
4 12.0047 12.2087 13.5929 14.5959 18.1996 24.9968 27.7172 

 
Table 4. Effect of control voltages to the second natural frequency for various FGM indexes. 
 

FGM index (n) Normalized volt-
age Metal 100 10 5 1 0.1 Ceramic 
0 29.7205 30.2519 33.6365 35.9718 44.7086 61.9063 68.6434 
1 30.7844 31.3348 34.8406 37.2595 46.3090 64.1224 71.1006 
2 32.0353 32.6081 36.2563 38.7735 48.1908 66.7279 73.9897 
3 33.1552 33.7480 37.5238 40.1290 49.8754 69.0606 76.5763 
4 34.0349 34.6434 38.5194 41.1937 51.1988 70.8930 78.6081 

 

 
 
Fig. 1. Schematic representation of the FG circular plate coupled with two piezoelectric layers. 
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manageable form based on their physical signifi-
cances. For a uniformly distributed piezoelectric layer, 
electric potentials ( t

zV  and b
zV ) are independent of 

the spatial coordinates r and θ. Thus, Eqs. (19) and 
(20) can be satisfied by using an Airy’s stress func-
tion ( , )rφ θ  [42] by redefining the forces as 

 
2

2 2

1 1 ,m
rN

r r r
φ φ

θ
⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠
 

2

2 ,mN
rθ
φ∂

=
∂

  

1 .m
rN

r rθ
φ
θ

∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂⎝ ⎠
  (23) 

 
Then, using the transverse electromechanical Eq. 

(21), the bending strain Eqs. (7) and the moment defi-
nitions (14), one can redefine the transverse electro-
mechanical equation of the circular FG plate as 
 

2

2 1 2

2 2 2 2

2 2 2 2 2 2

( , ) ( , )

1 1 1 1

m
z f

wD w r q r I h
t

w w w
r r r r r r r r

θ θ

φ φ φ
θ θ

∂
∆∆ = − + ×

∂
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+ + +⎢ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣

 

1 12 e
r

w N
r r r r

φ
θ θ

⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎦
  (24) 

 
in which e

rN is independent of r and θ coordinates as 
given in Eq. (17) and ∆ is the Laplacian operator in 
cylindrical coordinate system and is given by 

 
2 2

2 2 2r r r r θ
∂ ∂ ∂

∆ = + +
∂ ∂ ∂

  (25) 

 
Eliminating the displacements ur and uθ from the 

inplane displacement-strain Eqs. (6), then substituting 
the stress functions (14) and (23) into the combined 
equation with the transverse coordinate w, one can 
derive a compatible equation as 

 
2

2

2 2 2

2 2 2

( , ) ( )

1 1 1

f

f

h

fh
r E z dz

w w w w
r r r r r r

φ θ

θ θ

−

⎛ ⎞∆∆ = ×⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

∫
  (26) 

 
For a circular plate simply supported on its circum-

ference, the boundary conditions on the circumfer-
ence (r=a) are defined as 

 
0, 0, m e

r r rw u M M= = =    (27) 

It is further assumed that only axisymmetric plate 
deformations are considered; thus, the nonlinear 
transverse electromechanical Eqs. (24) and (26) can 
be reduced to the following transverse axisymmetric 
oscillation equations: 
  

2

2

1 2

1

1 1( )m m e
z r r

D r r w
r r r r r r

w w wq r rN N r I
r r r r r r t

⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ =⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦⎝ ⎠
∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (28) 

( )
2

22

2

1 1 ( )
2

f

f

hm
r fh

wr r N E z dz
r r r r−

∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠∂ ∂ ∂⎝ ⎠ ⎝ ⎠∫  (29) 

 
Boundary conditions for axisymmetric oscillations 

are defined as: 
Plate center (r=0): 

 

0w
r

∂
=

∂
 m

rN : finite  (30) 
 

Plate circumference (r=a): 
 

0w =  
2

2 2
e
r

w wD M
r r r

ν⎛ ⎞∂ ∂
− + =⎜ ⎟∂ ∂⎝ ⎠  

( ) 0m m
r rrN N

r
ν∂

− =
∂

  (31) 

 
Note that Eqs. (28)-(31) constitute the governing 

nonlinear electromechanical equations and boundary 
conditions for the nonlinear piezoelectric embedded 
FG circular plate with nonlinear axisymmetric defor-
mation and vibration. Since vibration analysis is ref-
erenced to the nonlinearly deformed static equilib-
rium position, a nonlinear static problem is solved 
first to determine the initial stress state and pre-
vibration deformations of the plate that is subjected to 
applied actuator voltage. By adding an incremental 
dynamic state to the pre-vibration state, the differen-
tial equations that govern the nonlinear vibration be-
havior of pre-stressed structure with initial nonlinear 
deformations are derived. Then the control effects 
induced by the piezoelectric actuators are evaluated. 
 

4. Nonlinear pre-vibration analysis 

In this section, voltage-induced static deformations 
of the circular FG plate with large deformations are 
studied. It is assumed that the external mechanical 
excitation is zero and control voltages applied to the 
top and bottom piezoelectric layers are of equal mag-
nitude and opposite signs such that an electric bound-
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ary control moment is generated on the plate circum-
ference as  
 

*t b
z zV V V= − =  (32) 

 
In addition, the inplane electric force vanishes due 

to Eq. (32). Simplifying the dynamic electromechani-
cal Eqs. (28) and (29) yields the nonlinear static equa-
tions as 
 

2 1

1
s

s

m s
r

D d d d dr r w
r dr dr r dr dr

d dwrN
r dr dr

⎛ ⎞⎡ ⎤⎛ ⎞ =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

  (33a) 

2

2
2

2

1 ( )

1 ( ) 0
2

s

f

f

m
r

h s
fh

d dr r N
dr r dr

dwE z dz r a
dr−

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞− 〈 〈⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫
   (33b) 

 
The boundary conditions at the plate center and cir-

cumference are redefined for the static equilibrium 
position as 

(1)  r=0:  

0sdw
dr

= , 
s

m
rN : finite  (34a,b) 

 
(2)  r=a:  

0sw = , ( ) 0
s s

m m
r rrN N

r
ν∂

− =
∂

, 

2

2 2 s

es s
r

d w dwD M
dr r dr

ν⎛ ⎞
− + =⎜ ⎟

⎝ ⎠
  (35a,b,c) 

 
where the electric moment is defined as 
 

( ) *
31s

e
r f pM e h h V= +    (36) 

 
To facilitate the analysis, normalized dimensionless 

quantities are adopted in static and dynamic analyses 
as follows [43]: 

 
2ry

a
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, ( )23 1 s
s

f

wW
h

ν= − ,  

( ) s
s

dWX y y
dy

= , 
2

2

( )
4

s

m
rm

s

a N
Y y y

D
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

2
2

2

( ) 3(1 )
2

s

m
rm

s
f

M a
P y

D h
ν

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
,  

2
2

2

( ) 3(1 )
2

s

e
re

s
f

M a
P y

D h
ν

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
  (37) 

 
The nonlinear static equations and boundary condi-

tions (33)-(35) can be normalized in a dimensionless 
form. The dimensionless static equations and bound-
ary conditions become 
 

2
2

2

( ) ( ) ( )ms
s s

d X yy X y Y y
dy

= ,   (38a) 

( )
2

22
2

( ) 1 (2 ) , 0 1
2

m
s

s
d Y yy X y y

dy
= − < <    (38b) 

(0) 0sX = , (0) 0m
sY =  ( y = 0)  (39a,b) 

( ) (1)1 (1) 2 0
m

m s
s

dYY
dy

ν+ − = ,  

( ) (1)1 (1) 2
m

es
s s

dXX P
dy

ν− − = −  ( y = 1)  (40a,b) 

 
For the nonlinear static equations and boundary 

conditions derived above, static solutions ( )sX y and 
( )m

sY y can be assumed in exact series expansion 
forms [43] as 
 

1
( ) i

s i
i

X y A y
∞

=

= ∑  
1

( )m i
s i

i
Y y B y

∞

=

= ∑    (41a,b) 

 
where iA and iB are coefficients. Solving the coupled 
static equations gives the dimensionless slope ( )sX y , 
and integrating the slope gives the dimensionless 
static deflection ( )sW y as: 
 

1 1( ) ( )s sy
W y X dξ ξ

ξ
= −∫ ,   (42) 

 
Substituting the series solutions (41a, b) into the 

system equations and boundary conditions (38)-(40), 
one can derive recurrence equations for the solution 
coefficients iA and iB as: 
 

( )
1

1

1
1

i

i j i j
j

A A B
i i

−

−
=

=
− ∑ ,  

( )
1

1

1
2 1

i

i j i j
j

B A A
i i

−

−
=

−
=

− ∑ , 2,3,4,...i =   (43a,b) 

 
and boundary conditions 
 

( )
1

1 2 0i
i

i Bν
∞

=

⎡ + − ⎤ =⎣ ⎦∑ ,  
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( )
1

1 2 0e
i s

i
i A Pν

∞

=

⎡ − − ⎤ + =⎣ ⎦∑    (44a,b) 

 
The recurrence Eqs. (43a, b) suggest that only A1 

and B1 are independent coefficients determined by the 
nonlinear algebraic boundary Eqs. (44a, b). Using the 
Newton-Raphson method [44], one can solve the 
nonlinear boundary equations and determine the nor-
malized plate displacement in an exact series expan-
sion form. Accordingly, nonlinear (static) control 
effects can be investigated.  
 

5. Nonlinear vibration analysis and ampli-
tude-frequency relations 

5.1 Nonlinear vibration analysis 

The free vibration analysis with piezoelectric con-
trol effects is assumed in the vicinity of nonlinearly 
deformed static equilibrium position. Frequency con-
trol or variation of the circular plate with an initial 
nonlinear deformation is studied in this section. We 
assume that the solutions of the nonlinear dynamic 
Eqs. (28)-(31) include a static component and a dy-
namic component as: 
 

( , ) ( ) ( , )s dw r t w r w r t= + ,  
( , ) ( , ) ( , )

s d

m m m
r r rN r t N r t N r t= +   (45a,b) 

 
Substituting the assumed solutions (45a, b) into the 

original dynamic equations and boundary conditions 
(28)-(31) and subtracting corresponding terms in the 
nonlinear static equations and boundary conditions 
(33)-(35), one can derive the nonlinear dynamic equa-
tions in the vicinity of nonlinear deformed geometry 
as: 

 
2

2
1 2

1

1
d s d

d
d

m m ms d d
r r r

D wr r w I
r r r r r r t

dw w wrN rN rN
r r dr r r

⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ = − +⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦⎝ ⎠
∂ ∂ ∂⎡ ⎤+ +⎢ ⎥∂ ∂ ∂⎣ ⎦

  (46a) 

2

2
2

2

1 ( )

1 ( ) 2
2

d

f

f

m
r

h s d d
fh

r r N
r r r

dw w wE z dz
dr r r−

∂ ∂⎡ ⎤ =⎢ ⎥∂ ∂⎣ ⎦
⎡ ⎤∂ ∂⎛ ⎞⎛ ⎞− +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

∫
, 0<r<a (46b) 

 
The boundary conditions are defined as 
 
(1) r =0:  

0dw
r

∂
=

∂
, 

d

m
rN : finite;  (47a,b) 

 
(2) r =a:  

0dw = , ( ) 0
d d

m m
r rrN N

r
ν∂

− =
∂

 ,  

 
2

2 2 0d dw wD
r r r

ν⎛ ⎞∂ ∂
− + =⎜ ⎟∂ ∂⎝ ⎠

  (48a,b,c) 

 
Again, we define the normalized dimensionless 

quantities as: 
 

rx
a

= , ( )22 3 1 d
d

f

ww
h

ν= − ,  

2

2

d

d

m
rm

r

a N
N

D
=  , ( )22 3 1 s

s
f

ww
h

ν= −    

2

2

s

s

m
rm

r

a N
N

D
= , 

4
2

1
2

n
aI
D

λ ω=  , ntτ ω=   (49) 

 
The nonlinear dynamic equations can be normal-

ized in a dimensionless form: 
 

2

2

1 1 ( )

1
d s d

d

m m md s d d
r r r

x x w
x x x x x x

w dw w wxN xN xN
x x dx x x

λ
τ

⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ =⎨ ⎬⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∂ ∂ ∂ ∂⎡ ⎤− + + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

(50a) 

2

2

1 ( , )

1
2

d

m
r

s d d

x x N x
x x x

dw w w
dx x x

τ∂ ∂⎛ ⎞⎡ ⎤ =⎜ ⎟⎣ ⎦∂ ∂⎝ ⎠
⎡ ⎤∂ ∂⎛ ⎞− +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

, 0<x<1  (50b) 

 
The normalized dimensionless boundary conditions 

become 
 

0dw
x

∂
=

∂
, 

d

m
rN : finite, at (x=0)  (51a,b) 

0dw = , ( ) 0
d d

m m
r rxN N

x
ν∂

− =
∂

,  

2

2 0d dw w
x x x

ν∂ ∂
+ =

∂ ∂
, at (x=1)  (52a,b,c) 

 
Eqs. (50)-(52) constitute the dimensionless nonlin-

ear dynamic equations (in axisymmetric transverse 
oscillation) and boundary conditions of the piezoelec-
tric laminated FG circular plate with initial nonlinear 
deformations. Solutions for the linear eigenvalue 
problems are derived first and then extended to in-
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clude nonlinear perturbation effects. 
 

5.2 Solutions for eigenvalue problem 

Assuming harmonic solutions for ( , )dw x τ  and 
( , )

d

m
rN x τ in the free vibration analysis as:  
 

( , ) ( )sind dw x R xτ τ= , ( , ) ( )sin
d

m
r dN x S xτ τ= ,  (53a,b) 

 
in which ( )dR x  defines the mode shape function and 

( )dS x defines the spatial force distribution. Substitut-
ing Eqs. (53) into Eq. (50) gives the eigenvalue equa-
tions as 
 

1 1 ( ( ))

1( ) ( )
s

d

ms d
d d r

d d d dx x R x
x dx dx x dx dx

d dw dRR x xS x xN
x dx dx dx

λ

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ =⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤+ +⎢ ⎥⎣ ⎦

 

21 ( ) s d
d

d d dw dRx x S x
dx x dx dx dx

⎛ ⎞⎡ ⎤ = −⎜ ⎟⎣ ⎦⎝ ⎠
,   (54a,b) 

 
The boundary conditions become 

 

0ddR
dx

= , ( )dS x : finite at (x=0)  (55) 

0dR = , ( ( )) ( ) 0d d
d xS x S x
dx

ν− = ,  

 
2

2 0d dd R dR
dx x dx

ν
+ =  at (x=1)  (56) 

 
Using the first four dimensionless terms in Eqs. 

(37) , the series solutions (41a, b) and the third and 
fifth terms in Eq. (49), one can derive the static solu-
tions sdw dx and 

s

m
rN as 

 
2 1

1

is
i

i

dw A x
dx

∞
−

=

= ∑ , 2

1
s

m i
r i

i
N B x

∞

=

= ∑    (57a,b) 

 
in which the coefficients are 

 
4i iA A= , 1 4i iB B− =  , 1,2,3,...i =   (58a,b) 

 
Using the static solutions (57a, b), one can write the 

series-type eigenfunctions ( )dR x and ( )dS x in the 
form 
 

2

0
( ) i

d i
i

R x a x
∞

=

= ∑ , 2

0
( ) i

d i
i

S x b x
∞

=

= ∑   (59a,b) 

 
in which ia  and ib  are constants determined by the 

eigenvalue equations and boundary conditions (54)-
(56). Substituting static solutions (57a, b) and series 
eigenfunctions (59a, b) into the eigenvalue equations 
and boundary conditions (54)-(56) and solving for 
constants ia  and ib  gives 
 

( ) 1
1

1
2 1

i

i j i j
j

b ja A
i i − +

=

= −
+ ∑ , 1,2,3,...i =   (60a) 

( )2 0 1 0 1 0
1 2 2
64

a a a B Abλ⎡ ⎤= + +⎣ ⎦ ,   (60b) 

( )3 1 1 1 1 1 2 0 2 0
1 4 2 4

576
a a a B Ab a B A bλ⎡ ⎤= + + + +⎣ ⎦  (60c) 
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 (60d) 

0
0i

i
a

∞

=

=∑ , ( )
0

2 1 0i
i

i iaν
∞

=

− + =∑  ,  

( )
0

2 1 0i
i

i bν
∞

=

+ − =∑    (61a,b,c) 

 
Note that only 0a , 1a  and 0b  are independent 

constants for the eigenfunctions ( )dR x and ( )dS x . 
The next step is to search for their nonzero solutions, 
i.e., solutions of ( ) 0dR x ≠ , which correspond to 0a , 

1a  and 0b  not simultaneously being zero for an 
eigenvalue λ . Using the condition of nonzero solu-
tions of the homogeneous algebraic equations, one 
can determine the eigenvalue λ  and consequently the 
corresponding eigenfunction. 

 
5.3 Amplitude-frequency relations for large ampli-

tude vibrations 

It is known that the frequency changes with respect 
to the vibration amplitude in nonlinear oscillations. In 
this section, the perturbation method is used to inves-
tigate the nonlinear deformation (large amplitude) 
effect at natural frequencies of the piezoelectric 
bounded FGM circular plate. One can define an inte-
gral equation for the radial membrane force ( , )

d

m
rN x τ  

[43], 

2
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2 0

*1 *
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1 1 1( , )
2 2
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d

d d
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s d d

n
r r

N x

dw w wG x d
x d

N x N x

τ

ξ ξ
ξ ξ ξ ξ

=

⎡ ⎤⎛ ⎞∂ ∂
+ =⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

+

∫  (62) 
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in Eq. (50b) and boundary conditions (51b) and 
(52b). * ( )

d

l
rN x and * ( )

d

n
rN x  are the linear component 

and nonlinear components, respectively. ( , )G x ξ  is a 
kernel function and is defined as: 

 
( )
( )

2 2

2 2

(1 ) (1 ) 1 ,
( , )

(1 ) (1 ) 1 ,

x x
G x

x x

ν ν ξ ξ
ξ

ν ν ξ ξ

⎧⎡ ⎤− + + <⎪⎣ ⎦= ⎨
⎡ ⎤− + + >⎪⎣ ⎦⎩

  (63) 

 
The nonlinear dynamic equation of large amplitude 

free vibration in the vicinity of the nonlinearly de-
formed static equilibrium position can be written as 

 

2

2

1 1 ( )

1
d s d

d

m m md s d d
r r r

x x w
x x x x x x

w dw w wxN xN xN
x x dx x x

λ
τ

⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ =⎨ ⎬⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∂ ∂ ∂ ∂⎡ ⎤− + + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 (64) 

 
with the boundary conditions  
 

Plate center x=0: 0dw
x

∂
=

∂
  (65) 

 
(2) Plate circumference x=1:  

0dw = , 
2

2 0d dw w
x x x

ν∂ ∂
+ =

∂ ∂
,  (66a,b) 

 
It should be recalled that the boundary membrane 

force at x=1 was defined in Eq. (62). Assume an ap-
proximate solution of the nonlinear response 

( , )dw x τ  to be a product of a spatial function * ( )dw x  
and a temporal function ( )f τ , 
 

*( , ) ( ) ( )d dw x w x fτ τ= ,   (67) 
 
where * ( )dw x  is a test function which satisfies 
boundary conditions of Eqs. (65) and (66) and here is 
taken as the exact series-type eigenfunction ( )dR x  in 
Eq. (59a). Substituting Eq. (67) into Eq. (64) and 
imposing the Galerkin method yields an equation of 
the temporal function ( )f τ as: 
 

2 3
, 1 2 0f f f fττ µ µ+ + + = , 1 3 2c cµ = ,  

2 4 2c cµ =   (68) 
 
where the coefficients 1c and 2c  are linear parts and 

3c and 4c  are nonlinear parts; the eigenvalue λ  is 
defined as 
 

2 1c cλ = ,   (69) 
 

The coefficients ic  are defined by integral equa-
tions as: 
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in which 
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2d

l s d
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dw dwN x G x d
x d d
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21 *
*

2
0

1 1( ) ( , )
4d

n d
r

dwN x G x d
x d

ξ ξ
ξ ξ
⎛ ⎞
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⎝ ⎠

∫   (71b) 

 
Using the Krylov-Bogoliubov-Mitropolsky (KBM) 

perturbation method [45] and solving the nonlinear 
dynamic Eq. (68), one can obtain the amplitude-
frequency relations as  
 

( )2 2 3
2 1 1 2

1 5ˆ ˆ1 9 10 ...
24 8n

a aωα µ µ µ µ
ω

= = + − + +  (72) 

 
Note that the ratio is unity, 1nα ω ω= =  if the 

system is linear. Normalizing the test function  
 

[ ]

* *

0,1
(0) ( ) 1Maxd d

x
w w x

∈

⎡ ⎤= =⎣ ⎦   (73) 

 
One finds that â  represents the normalized di-

mensionless vibration amplitude at the center of the 
piezoelectric laminated circular FGM plate. Further-
more, using Eq. (49), one can write the dimensionless 
amplitude at the center of the plate as 
 

( )2
0

0

ˆ 2 3 1 d
d r

f r

wa w
h

ν
=

=

= = −   (74) 
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Table 5. FGM index effects to the first normalized mode shape. 
 

FGM index (n) / Normalized Voltage (V) 
Metal n=100 n=10 Radial Dis-

tance (r/a) 
V=0 V=2 V=3.8 V=0 V=2 V=3.8 V=0 V=2 V=3.8 

0.0 0.9991 0.9972 0.9964 0.9989 0.9970 0.9962 0.9987 0.9968 0.9960 
0.2 0.9589 0.9509 0.9401 0.9576 0.9496 0.9388 0.9562 0.9483 0.9375 
0.4 0.8105 0.7882 0.7659 0.8081 0.7858 0.7635 0.8056 0.7833 0.7610 
0.6 0.5758 0.5494 0.5184 0.5722 0.5458 0.5148 0.5687 0.5422 0.5113 
0.8 0.3018 0.2782 0.2518 0.2990 0.2754 0.2490 0.2962 0.2726 0.2462 
1.0 0.0029 0.0022 0.0020 0.0025 0.0018 0.0016 0.0021 0.0014 0.0012 

n=1 n=0.1 Ceramic (n=0) 
 

V=0 V=2 V=3.8 V=0 V=2 V=3.8 V=0 V=2 V=3.8 
0.0 0.9985 0.9966 0.9958 0.9983 0.9964 0.9956 0.9981 0.9962 0.9954 
0.2 0.9549 0.9470 0.9362 0.9536 0.9457 0.9349 0.9523 0.9443 0.9335 
0.4 0.8032 0.7809 0.7586 0.8008 0.7785 0.7562 0.7983 0.7760 0.7537 
0.6 0.5651 0.5387 0.5077 0.5615 0.5351 0.5041 0.5580 0.5316 0.5006 
0.8 0.2934 0.2698 0.2434 0.2906 0.2670 0.2406 0.2878 0.2642 0.2378 
1.0 0.0017 0.0010 0.0008 0.0013 0.0006 0.0004 0.0009 0.0002 0.0000 

 
Table 6. FGM index and normalized voltage effects to the second normalized mode shape. 
 

FGM index (n) / Normalized Voltage (V) 
Metal  n=100 n=10 n=1  Ceramic (n=0) 

Radial 
Distance 

(r/a) 
 V=0 V=3  V=0 V=3 V=0 V=3 V=0 V=3  V=0 V=3 

0.0 1.0000 1.0000  1.0000 1.0000 0.9999 0.9999 0.9999 0.9999  0.9998 0.9998 
0.1 0.9415 0.9300  0.9413 0.9298 0.9411 0.9296 0.9409 0.9294  0.9405 0.9290 
0.2 0.7416 0.7343  0.7413 0.7340 0.7409 0.7336 0.7406 0.7333  0.7399 0.7327 
0.3 0.4540 0.4441  0.4535 0.4437 0.4531 0.4432 0.4526 0.4427  0.4517 0.4418 
0.4 0.1437 0.1228  0.1431 0.1222 0.1425 0.1216 0.1419 0.1210  0.1407 0.1197 
0.5 -0.1285 -0.1608  -0.1292 -0.1615 -0.1300 -0.1623 -0.1307 -0.1630  -0.1322 -0.1645
0.6 -0.3150 -0.3507  -0.3159 -0.3516 -0.3168 -0.3525 -0.3176 -0.3533  -0.3194 -0.3551
0.7 -0.3879 -0.4161  -0.3890 -0.4171 -0.3900 -0.4181 -0.3910 -0.4192  -0.3931 -0.4212
0.8 -0.3426 -0.3566  -0.3433 -0.3573 -0.3440 -0.3580 -0.3447 -0.3587  -0.3461 -0.3601
0.9 -0.1985 -0.2008  -0.1989 -0.2012 -0.1993 -0.2016 -0.1997 -0.2020  -0.2005 -0.2028
1 0.0000 0.0000  -0.0001 -0.0001 -0.0002 -0.0002 -0.0003 -0.0003  -0.0005 -0.0005

 
Table 7. Normalized voltage effects to the frequency dependent amplitude changes of the first two modes for metal plate. 
 

First Mode (ω/ω1) Second Mode (ω/ω2) Central Deflection 
 V=0 V=1 V=1.5 V=2 V=0 V=1 V=1.5 V=2 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.1 1.0029 0.9962 0.9964 0.9955 1.0031 1.0023 1.0026 1.0007 
0.2 1.0203 0.9967 0.9949 0.9946 1.0098 1.0094 1.0090 1.0040 
0.3 1.0486 0.9966 0.9912 0.9899 1.0214 1.0198 1.0189 1.0084 
0.4 1.0866 0.9984 0.9871 0.9828 1.0385 1.0345 1.0333 1.0138 
0.5 1.1337 1.0060 0.9856 0.9773 1.0610 1.0540 1.0524 1.0207 
0.6 1.1900 1.0229 0.9894 0.9765 1.0881 1.0785 1.0758 1.0291 
0.7 1.2560 1.0504 0.9995 0.9810 1.1195 1.1072 1.1026 1.0392 
0.8 1.3334 1.0896 1.0167 0.9892 1.1555 1.1392 1.1323 1.0516 
0.9 1.4259 1.1446 1.0435 1.0002 1.1966 1.1745 1.1654 1.0654 
1 1.5405 1.2280 1.0880 1.0190 1.2440 1.2160 1.2050 1.0799 
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Recall that all the quantities presented in this sec-
tion are dimensionless, and are normalized with re-
spect to known parameters. 
 

6. Case studies, results and discussions 

In this section, the nonlinear static deformation, and 
the linear and nonlinear vibrations in the vicinity of 
the nonlinearly deformed static positions of a simply 
supported piezoelectric bounded FGM circular plate 
are studied. The control effects (both static and dy-
namic effects) induced by the normalized control 
voltages are investigated. From the methods dis-
cussed in the preceding sections, a computer program 
was developed and numerical solutions were acquired 
and analyzed. Since the nonlinear dynamic analysis is 
built upon the nonlinear static analysis, static results 
are presented first, followed by the dynamic solutions.  

Before going further into the results and discussion, 
since there were no published results for the com-
pound piezoelectric FGM plate we decided to verify 
the validity of obtained results with those of FEM 
results. Our FEM model for piezo-FG plate comprises 
a 3D 8-noded solid element with 3 DOF per node 
(translation) in the host plate element and 6 DOF per 
node (3 translation, temperature, voltage and mag-
netic properties) in the piezoelectric element. Table 2 
compares the present results of normalized dimen-
sionless central deflections ( ) ( )23 1s s fW w hν= −  
with finite element solutions in analyzing the effect of 
normalized dimensionless piezoelectric voltages 

( )1/ 22 *
31 23(1 ) ( ) 2f p fV e h h V D hν⎡ ⎤= − +⎣ ⎦  to the nor-

malized dimensionless center deflections in which a 
nonlinear deflection-voltage relationship can be ob-
served. As it is seen from Table 2 the maximum dif-
ference between the proposed solutions and finite 
element method is about 0.073 % and a close correla-
tion between these results validates the proposed me-
thod of solution.  

As shown in Fig. 2 the effect of imposed voltage to 
the center deflection is nonlinear and this effect is 
predominant in lesser voltage amounts. 

Having validated the foregoing formulations, we 
begin to study the large amplitude vibration behavior 
of FG laminated circular plates that are subjected to 
electro-mechanical preloading. The results for lami-
nated plates with isotropic substrate layers (that is, the 
substrate is purely metallic or purely ceramic) and 
with graded substrate layers (various n) are given in 
both tabular and graphical forms. 
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Fig. 2. Comparison between the proposed series solution and 
FEM in analyzing the effect of normalized piezoelectric 
voltages to the dimensionless center deflections. 
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Fig. 3. Effect of control voltages to the first normalized natu-
ral frequency for various FGM indexes. 
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Fig. 4. Changes of the second natural frequency versus con-
trol voltages. 
 

We examine in this section the effect of control 
voltages to the vibration characteristics of the piezo-
electric laminated circular FG plate for various FGM  
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Fig. 5. Effect of FGM index to the second natural frequency. 
 
indexes. To this end, Tables 3, 4 as well as Figs. 3, 4, 
5 show the nonlinear relationships between first two 
natural frequencies 2

1 2ia I Dω , versus the dimen-
sionless control voltagesV . These free vibrations are 
assumed to be in the vicinity of the nonlinearly de-
formed static equilibrium position.  

Table 3 and Fig. 3 show the effect of normalized 
control voltage to the first natural frequency of the FG 
circular plate for various FGM indexes. It is seen that, 
for FGM plate with n=10 by increasing the imposed 
voltage from 1 to 2 (100%) first natural frequency 
increases about 28.4% while by increasing the voltage 
from 2 to 4 (100%) first natural frequency increases 
about 28.6%. 

Table 4 and Fig. 4 show the effect of normalized 
control voltages to the second natural frequency of 
the FGM circular plate for various FGM indexes. As 
it shows, for FGM plate with n=10 by increasing the 
imposed voltage from 1 to 2 (100%) the first natural 
frequency increases about 4.06% while by increasing 
the voltage from 2 to 4 (100%) the first natural fre-
quency increases 6.24%. 

Also from Table 3 and Table 4, the effect of ap-
plied control voltage is more dominant to the first 
natural frequency compared to its effect to the second 
natural frequency; e.g., while n=10, by increasing the 
normalized imposed voltage from 0 to 4 the first natu-
ral frequency increases about 145.5% while the sec-
ond natural frequency increases about 14.5%. It is 
worthy of note that the influence of the applied volt-
age is much more significant on the lower-order fre-
quencies, especially on the fundamental frequencies, 
and it tends to be much weaker on higher-order vibra-
tion frequencies. Since the lower-order frequencies 
are generally of the greatest importance in determin-
ing the dynamic response of a plate, this feature indi- 
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Fig. 6. FGM index effects to the first normalized mode shape 
for V=0. 
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Fig. 7. FGM index effects to the first normalized mode shape 
for V=3.8. 
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Fig. 8. Voltage effects to the first normalized mode shape 
(n=0). 
 
cates the great possibility of suppressing the dynamic 
deflections of pre-stressed FG circular plates by using 
the piezoelectric materials. 

Also, Fig. 5 illustrates the effect of FGM index on 
the normalized second frequency of the structure. The 
mode shapes of first two natural modes are also stud-
ied as the control voltage changes. The results are  
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Fig. 9. Voltage effects to the first normalized mode shape 
(n=10). 
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Fig. 10. Voltage effects to the first normalized mode shape 
(n=1000). 
 

 
 
Fig. 11. Normalized voltage effects to the second normalized 
mode shape for n=10. 
 
tabulated in Table 5 and the effect of FGM indexes is 
illustrated for (V=0, 3.8) in Figs. 6, 7 and the voltage 
effect is shown for (n=0, 10,100) in Figs. 8, 9, 10. 

Table 6 shows the effect of control voltages on the 
second normalized mode shape amplitude of the FG 
circular plate for various FGM indexes and for vari- 

 
 
Fig. 12. Normalized voltage effects to the second normalized 
mode shape for n=100. 
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Fig. 13. First natural frequency (ω/ω1) and amplitude (w/hf) 
relations for different control voltages (V=0, 0.8, 1, 1.5, 2). 
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Fig. 14. Second natural frequency (ω/ω2) and amplitude (w/ 
hf) relations for different control voltages (V=0, 1, 1.5, 2). 

 
ous radial distances (r/a). As it shows, for FGM plate 
with n=10 by imposing the voltage for the amount of 
V=3 the second normalized mode shape decreases by 
7.21% for (r/a=0.7) while it decreases by 2.18% for 
(r/a=0.3). For better viewing these effects, Figs. 11 
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and 12 are illustrated showing the effect of applied 
control voltages on the second normalized mode 
shape of the FG circular plate for various radial dis-
tances (r/a) and with two FGM indexes (n=10) and 
(n=100) respectively. 

Also the effect of normalized voltage on the fre-
quency dependent amplitude changes of the first two 
modes are investigated and tabulated in Table 7 while 
the frequency dependent amplitude changes of the 
first two modes are plotted in Figs. 13 and 14. In each 
figure, the effects of control voltages are also in-
cluded. Note that all quantities presented in this sec-
tion are normalized dimensionless quantities. 
 

7. Summary and conclusions 

The static, dynamic and control effects of a piezo-
electric bounded FGM circular plate with an initial 
nonlinear large static deformation (the von-Karman 
type geometrical nonlinear deformation) have been 
studied. System electromechanical equations incorpo-
rating the nonlinear deformation were derived first. 
An exact solution technique based on series-type 
solutions was used to solve for analytical solutions of 
nonlinear static and eigenvalue problems of the non-
linearly deformed circular plate. Large amplitude 
effects were studied by the Galerkin method and the 
perturbation method. Numeric results suggested that 
both the static and dynamic behavior of the nonlinear 
circular FG plate with various FGM indexes can be 
controlled by the control voltages applied to the pie-
zoelectric actuator layers. The analytical and numeri-
cal results suggest that first, the natural frequencies of 
small amplitude vibrations in the vicinity of the 
nonlinearly deformed static equilibrium position in-
crease as the piezoelectric voltage increases for all 
values of FGM indexes. The control effect on the first 
mode is more prominent than on the second mode for 
all values of FGM indexes, because the piezoelectric 
actuator layers are fully distributed on the plate. Since 
the lower-order frequencies are generally of the great-
est importance in determining the dynamic response 
of a plate, this feature indicates the great possibility of 
suppressing the dynamic deflections of pre-stressed 
FG circular plates by using the piezoelectric materials. 
Second, the control effects on natural mode shapes 
are minimal. Basically, these mode shapes remain 
about the same as their original mode shapes. Third, 
studies of nonlinear frequency-amplitude relations 
suggest that control voltages can bring the nonlineari-

ties back to their linear regions. Thus, with proper 
control voltages, undesired nonlinear oscillations in 
FG plates can be controlled to manageable linear 
oscillations, even further to actively damped oscilla-
tions. Accordingly, overall system performance can 
be significantly improved. 
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